45,466 research outputs found

    Nuclear Equation of State and Internal Structure of Magnetars

    Get PDF
    Recently, neutron stars with very strong surface magnetic fields have been suggested as the site for the origin of observed soft gamma repeaters (SGRs). We investigate the influence of a strong magnetic field on the properties and internal structure of such strongly magnetized neutron stars (magnetars). The presence of a sufficiently strong magnetic field changes the ratio of protons to neutrons as well as the neutron appearance density. We also study the pion production and pion condensation in a strong magnetic field. We discuss the pion condensation in the interior of magnetars as a possible source of SGRs.Comment: 5 pages with 3 figures, To appear in the Proceedings of the 5th Huntsville Gamma Ray Burst Symposium, Huntsville, Alabama, USA, Oct. 18-22, 199

    Discovery of GRS 1915+105 variability patterns in the Rapid Burster

    Get PDF
    We report the discovery of two new types of variability in the neutron star low-mass X-ray binary MXB 1730-335 (the 'Rapid Burster'). In one observation in 1999, it exhibits a large-amplitude quasi-periodic oscillation with a period of about 7 min. In another observation in 2008, it exhibits two 4-min long 75 per cent deep dips 44 min apart. These two kinds of variability are very similar to the so-called ρ\rho or 'heartbeat' variability and the θ\theta variability, respectively, seen in the black hole low-mass X-ray binaries GRS 1915+105 and IGR J17091-3624. This shows that these types of behavior are unrelated to a black hole nature of the accretor. Our findings also show that these kinds of behaviour need not take place at near-Eddington accretion rates. We speculate that they may rather be related to the presence of a relatively wide orbit with an orbital period in excess of a few days and about the relation between these instabilities and the type II bursts.Comment: Accepted for publication in MNRAS letter

    Escaping Nash inflation

    Get PDF
    Mean dynamics govern convergence to rational expectations equilibria of self-referential systems under least squares learning. We highlight escape dynamics that propel away from a rational expectations equilibrium under fixed-gain recursive learning schemes. These learning schemes discount past observations. In a model with a unique self-confirming equilibrium, we show that the destination of the escape dynamics is an outcome associated with government discovery of too strong a version of the natural rate hypothesis. That destination is not sustainable as a self-confirming equilibrium but is visited recurrently. The escape route dynamics cause recurrent outcomes close to the Ramsey (commitment) inflation rate in a model with an adaptive government. JEL Classification: E3, E52, E58

    Constraining the neutron star equation of state using XMM-Newton

    Full text link
    We have identified three possible ways in which future XMM-Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X-ray transient CenX-4 in quiescence one can use the RGS spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X-ray spectral fitting of the pn and MOS spectra and allows us to investigate whether the variability observed in the quiescent X-ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in N_H. This will test whether the soft thermal spectral component can indeed be due to the hot thermal glow of the neutron star. Potentially such an observation could also reveal redshifted spectral lines from the neutron star surface. Second, XMM-Newton observations of radius expansion type I X-ray bursts might reveal redshifted absorption lines from the surface of the neutron star. Third, XMM-Newton observations of eclipsing quiescent low-mass X-ray binaries provide the eclipse duration. With this the system inclination can be determined accurately. The inclination determined from the X-ray eclipse duration in quiescence, the rotational velocity of the companion star and the semi-amplitude of the radial velocity curve determined through optical spectroscopy, yield the neutron star mass.Comment: 4 pages, 1 figure, proceedings of the XMM-Newton workshop, June 2007, accepted for publication in A
    corecore